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Abstract

A new wave splitting for the Timoshenko beam is derived, which partially remedies earlier problems with
exponentially growing split fields and integral operator kernels. This allows for propagation of the split
fields further along the beam and for longer time intervals. The elements of the transform and Green’s
operator are derived in the Laplace domain and are computed by means of short and long time asymptotic
expansions and contour integration. Numerical results are presented for the case of forced motion of the
end of a semi-infinite beam and the cases of a point force and a point moment on an infinite beam.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The wave splitting technique has been used extensively in electrodynamic problems to solve
direct and inverse scattering problems for various types of media. In a homogeneous one-
dimensional domain the electromagnetic waves satisfy a second order wave equation. It can be
transformed to yield a system of two first order one-way wave equations, the wave splitting
transformation, where the new dependent variables are the split fields. (Alternatively, starting
from the first order Maxwell’s equations, first order one-way equations may be obtained, e.g., by
forming linear combinations.) The wave splitting can be applied to an inhomogeneous one-
dimensional domain, usually leading to a coupled system of equations, whereupon various time-
domain techniques can be utilized to solve scattering problems. Examples of these methods are the
imbedding method, Green’s function technique and the wave propagator method. Three examples
from a vast number of articles on these methods are [1–3]. These techniques carry over directly to
low order mechanical elements such as the string or the rod.
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Turning to higher order mechanical waveguides, a common mathematical model for the beam
is the Timoshenko equation. It may be written as a fourth order hyperbolic PDE or, alternatively,
as a coupled system of first order equations in the spatial co-ordinate, with four dependent
variables. A wave splitting for the Timoshenko beam was presented in Ref. [4]. It is obtained by
diagonalizing the original system of first order equations. When the wave splitting transform is
applied to the dependent variables of the original system of equations, these are transformed into
four new dependent variables, the split fields, which are governed by a system of four decoupled
first order one-way wave equations. In each direction two different fields propagate with different
wave front speeds, the rod velocity and the effective shear velocity. When added, they form the
mean transverse deflection field propagating in that direction, while as individual wave fields they
have no obvious physical interpretation. This will hereafter be referred to as the original wave
splitting. If the original wave splitting is applied to an inhomogeneous beam, the split fields are
governed by a coupled system of one-way wave equations. In this context inhomogeneous means
that a geometrical or material parameter of the beam varies with the spatial co-ordinate along the
beam axis. Time-domain techniques can then be used to solve scattering problems for the beam.
Although several scattering problems have been solved [5–8] this method has the undesirable
features of split fields and kernels that are exponentially growing. The exponential behaviour is
cancelled out when the fields are transformed back to the physical variables, but the applications
of the time-domain techniques mentioned above deal with the split fields. With the numerical
problems that follow, these features drastically limit the ability to propagate boundary data along
the beam as well as the ability to obtain enough boundary data for large inhomogeneous regions.
The final goal, to solve an inverse problem, is then confined to determination of moderately
distributed inhomogeneities close to the measuring point.
A qualitative understanding of the exponentially growing behaviour is gained from the

following argument. For the set of every combination of permissible physical fields, to which the
boundary conditions belong, the two split fields travelling in the same direction must coexist. They
are, however, treated mathematically as independent. To excite only one of the split fields would
require the injection of an unbounded amount of energy into the beam, see Ref. [9]. Hence, each
split field behaves as if it carries an unbounded amount of energy, which is manifested in
exponential growth. In Refs. [8–11] the authors compensate for the exponential growth by
extracting an exponential factor from the split fields, but this merely postpones the problem of
taking the difference of two exponentially large fields.
This paper deals with finding a wave splitting for the Timoshenko beam that leads to well

behaved split fields and integral operator kernels. The original splitting is the only wave splitting
that gives two decoupled wave fields for each direction. This is however done at the price of
getting unphysical split fields. By relaxing the condition that the two split fields propagating in the
same direction must be decoupled, the unphysical behaviour leading to numerical difficulties can
be avoided for the new wave splitting. The mean transverse deflection field may be decomposed
into its left and right propagating components. This is a purely directional decomposition into
physical wave fields, which are decoupled for homogeneous regions. It corresponds to the
factorization of the fourth order Timoshenko equation into two second order PDEs, each
governing the propagation in one direction. From here, the split fields of the original wave
splitting could be obtained, but instead it is preferable to work with the left and right moving
components of the mean transverse deflection and their spatial derivatives. For each direction the

ARTICLE IN PRESS

M. Johansson / Journal of Sound and Vibration 275 (2004) 299–316300



new split fields are coupled, but in contrast to the original wave splitting, this decomposition has
the advantage of being physically permissible since there may be coupled waves propagating in
only one direction. Moreover, these components are physical wave fields themselves and thereby
well behaved. As all transform and propagation operators operate on physical fields it is expected
that their kernels are well behaved too. The matter of transforming to the new split fields, as well
as propagating them, should then be a question of choosing suitable numerical integration
schemes.
After an outline of the Timoshenko equation in Section 2, the new wave splitting

transformation is derived in Section 3. In Section 4 Green’s function operators for the
homogeneous beam are derived. The wave splitting is applied to three different boundary
conditions and boundary data are propagated along the beam by means of Green’s operators.
Numerical results are presented in Section 5. Finally, some concluding remarks are found in
Section 6.

2. The Timoshenko beam equation

The Timoshenko beam equation for an homogeneous infinite beam may be written as

@xg ¼ c�21 @2t w; ð1Þ

@2xc�
f1

f2
g ¼ c�22 @2tc; ð2Þ

g ¼ @xw þ c; ð3Þ

where wðx; tÞ; cðx; tÞ and gðx; tÞ are the mean transverse deflection, the mean rotation and the
mean shear angle of the cross-section, respectively. Note that c is defined in a direction opposite
to that in Refs. [4,9,12], see Fig. 1. The velocities c1 (effective shear velocity) and c2 (rod velocity)
are defined by

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0G=r

p
; c2 ¼

ffiffiffiffiffiffiffiffiffi
E=r

p
; ð4Þ

and the fi are the stiffnesses given by

f1 ¼ k0GA; f2 ¼ EI ; ð5Þ
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where A is the cross-section area, I its moment of inertia and r is the density of the beam. E is the
modulus of elasticity, G is the shear modulus and k0 is the shear coefficient.
The other familiar form of the Timoshenko beam equation is

ð@4x � ðc�21 þ c�22 Þ@2x@
2
t þ r�20 c�22 @2t þ c�21 c�22 @4t Þw ¼ 0; ð6Þ

where r0 is the radius of gyration given by r0 ¼
ffiffiffiffiffiffiffiffiffi
I=A

p
: Non-dimensional variables are introduced

according to

x0 ¼ x=r0; t0 ¼ t=t; w0 ¼ w=r0; t ¼ r0=c2ðq � 1Þ; ð7Þ

where t is a characteristic time and q is a non-dimensional parameter given by

q ¼ ðc22 þ c21Þ=ðc
2
2 � c21Þ: ð8Þ

For most materials q > 1 and t > 0; see Ref. [4]. Eq. (6) now becomes

ð@4x0 � 2qðq � 1Þ@2x0@2t0 þ ðq � 1Þ2@2t0 þ ðq2 � 1Þðq � 1Þ2@4t0 Þw
0 ¼ 0: ð9Þ

From hereon, unprimed variables will denote non-dimensional variables unless otherwise stated.
This fourth order differential equation can be factorized and written in terms of the
eigenoperators defined in Ref. [4]

ð@x � l1Þð@x þ l1Þð@x � l2Þð@x þ l2Þw ¼ 0; ð10Þ

so that w may be written as the sum

w ¼ wþ
1 þ w�

1 þ wþ
2 þ w�

2 ; ð11Þ

where the w7
i satisfy

ð@x7liÞw7
i ¼ 0; i ¼ 1; 2: ð12Þ

In the Laplace domain the eigenoperators are given by

*li ¼
ffiffiffiffiffiffiffiffiffiffiffi
q � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs27s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

pq
; i ¼ 1; 2: ð13Þ

Here, the upper sign refers to i ¼ 1 and the lower sign refers to i ¼ 2: Some early remarks about
these operators can be made here. Their leading terms for large s are a�11 s and a�12 s; respectively,
indicating that they carry a differential operator. The ai are related to the wave front speeds and
are given by

a�11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
; a�12 ¼ ðq � 1Þ: ð14Þ

The *li both have branch points in the complex s-plane at s ¼ 71: This indicates that they grow
exponentially in the time domain. Both also have a branch point at s ¼ 0 and *l2 has additional
branch points at s ¼ 7ia1; which indicates an oscillatory behaviour in the time domain. The
eigenoperators are thus built up by a differential operator and a convolution with an
exponentially growing kernel. This feature also appears in the transformation operator matrices
that transform between the physical and the split fields when the original wave splitting is used.
For a more extensive discussion of these operators, see Refs. [4,9].
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3. Decomposition into waves travelling in different directions

The original wave splitting transforms from the physical variables to w7
i ; i ¼ 1; 2: Thus, in

addition to decomposing the wave field into parts travelling in opposite directions, it also
transforms into wave fields satisfying decoupled first order one-way equations. By removing the
decoupling operation, a purely directional wave splitting is obtained. As will be seen, it also
removes the problem of exponentially growing split fields and kernels. To achieve this it is
sufficient to factorize the homogeneous Timoshenko equation into the product of two second
order one-way differential operators, thus retaining the coupling between the waves propagating
in the same direction albeit with different wave front speeds. This is readily done by inspection of
Eq. (10). The new PDEs are

@2xw77A@xw7 þBw7 ¼ 0; w ¼ wþ þ w�; ð15Þ

where, A ¼ l1 þ l2 and B ¼ l1l2: The new split fields, w7; where wþ is the part of w that
propagates in the positive x direction and w� is the part propagating in the negative x
direction, may exist independently of each other and satisfy the same conditions as w: They are
therefore not exponentially growing (unless the forcing is). Moreover, they are related to
the split fields of the original wave splitting as w7 ¼ w7

1 þ w7
2 : The dynamics for the new split

fields are

@xw ¼

0 1 0 0

�B �A 0 0

0 0 0 1

0 0 �B A

0BBB@
1CCCAw; w ¼

wþ

@xwþ

w�

@xw�

0BBB@
1CCCA: ð16Þ

To obtain the wave splitting transformation, relations between the physical fields and the split
fields are sought. Here, it is convenient to choose the physical field vector as u ¼ ðw; @xw;c; @xcÞ

T:
If g is desired, it is easily obtained by means of Eq. (3). From the second member of Eq. (15),
relations for w and @xw are obtained. Since the split fields are truly independent for the
homogeneous beam, so are the corresponding rotation angles, c7: Hence, the ansatz

c7 ¼ C7w7 þD7@xw7; c ¼ cþ þ c�; ð17Þ

is made. The operators C7 and D7 are only time dependent. Insertion into the non-dimensional
version of Eq. (1) using Eq. (3) gives

@2xw7 þ ð1þD7Þ�1C7@xw7 � ð1þD7Þ�1a�21 @2t w7 ¼ 0: ð18Þ

By identifying terms of Eqs. (15) and (18) the operators are obtained as

D7 ¼ D ¼ �1� a�21 @2tB
�1;

C7 ¼ 7C ¼ 7ð�a�21 @2tB
�1AÞ: ð19Þ

To derive a relation between the spatial partial derivative of the rotation angle and the split fields,
Eq. (15) is inserted into the non-dimensional version of Eq. (1) using Eq. (3), giving

@xc
7 ¼ a�21 @2t w77A@xw7 þBw7: ð20Þ
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Denoting the wave splitting transformation operator by P; Eqs. (15), (17) and (20) now define the
inverse transformation, from the split fields, w; to the physical fields, u:

u ¼ P�1w ¼

1 0 1 0

0 1 0 1

C D �C D

ða�21 @2t þBÞ A ða�21 @2t þBÞ �A

0BBB@
1CCCAw: ð21Þ

The forward transformation is

w ¼ Pu ¼
1

2

1 �DC�1 C�1 0

�ða�21 @2t þBÞA�1 1 0 A�1

1 DC�1 �C�1 0

ða�21 @2t þBÞA�1 1 0 �A�1

0BBBB@
1CCCCAu: ð22Þ

3.1. Time-domain representations

In the time domain all operators and transform matrix elements are of the form

Fu ¼
X
m

km;F@mt u þ KF�u

¼
X
m

km;F@mt u þ
Z t

0

KFðt0Þuðt � t0Þ dt0; ð23Þ

where m ¼ 0; 1; 2; and KF is some kernel function containing, at most, jump discontinuities. The
Laplace transformed operators *A and *B are obtained from identification of the product of the
Laplace transformed differential operators in Eq. (15) with the Laplace transform of Eq. (9) and
are given by

*B ¼ a�22 sð1þ a�21 s2Þ1=2;

*A ¼ ð2 *Bþ 2qðq � 1Þs2Þ1=2 ¼ ð2a�12 sÞ1=2ðð1þ a�21 s2Þ1=2 þ qsÞ1=2: ð24Þ

Alternatively, Eq. (13) may be used. *A and *B are both seen to have branch points at s ¼ 7ia1:
The branch cut is chosen to go between these points along the imaginary axis so that
Reð1þ a�21 s2Þ1=2 and Re s have the same sign. *A also has one additional branch point at s ¼ 0:
The reason why the branch points at s ¼ 71 are absent is due to the fact that both *A and *B are
homogeneous polynomials in el1l1 and el2l2: Passing through a presumed branch cut emanating from
s ¼ 71 just changes the subindices of *li from 1 to 2 and vice versa. The operators thus have the
same values on both sides of the cut so no cut is necessary. The case is the same for the Laplace
transform of all operators figuring in the wave splitting operators in Eqs. (21) and (22). Then, the
Bromwich contour for their inverse Laplace transformation can be placed immediately to the
right of the imaginary axis and, as expected, the kernels do not have exponentially growing
behaviour.
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For B and D explicit time domain expressions are given by Eq. (23) with

k2;B ¼ a�12 a�11 ; k0;B ¼ a�12 a1; KB ¼ a1t�1J2ða1tÞ;

k0;D ¼ �1� a�11 a2; KD ¼ �a1J1ða1tÞ; k1;B ¼ k2;D ¼ k1;D ¼ 0; ð25Þ

where Jn are Bessel functions of order n: The other operators were obtained by the approximate
methods described for A in Appendix A. In Ref. [4], various series representations are obtained
for the eigenoperators, li; which are related to the operators presented here. Comments on these
are found in Appendix C. Further discussion of the wave splitting transform is found in Section 6.

4. Green’s operator matrices for the split fields in homogeneous regions

The main concern in this paper is to be able to propagate the wave fields over long distances
and for long times without having problems with large cancellations and exponential behaviour. It
is assumed that the wave fields at x ¼ 0 are given and propagated to position x: Green’s operators
can be obtained by solving Eq. (15) in the Laplace domain with *w7ð0; sÞ and @x *w

7ð0; sÞ known.
The split fields, *w7ðx; sÞ ¼ ð *w7ðx; sÞ; @x *w

7ðx; sÞÞT; may then be given in terms of the boundary
values as

*w7ðx; sÞ ¼ *G7ðx; sÞ *w7ð0; sÞ; *w7ð0; sÞ ¼ *G7ð�x; sÞ *w7ðx; sÞ; ð26Þ

where

*Gþðx; sÞ ¼ ð*l2 � *l1Þ
�1

*l2e�x*l1 � *l1e�x*l2 e�x*l1 � e�x*l2

�*l1 *l2ðe�x*l1 � e�x*l2Þ �*l1e�x*l1 þ *l2e�x*l2

 !
; ð27Þ

*G�ðx; sÞ ¼ ð*l2 � *l1Þ
�1

*l2ex*l1 � *l1ex*l2 �ex*l1 þ ex*l2

*l1 *l2ðex*l1 � ex*l2Þ �*l1ex*l1 þ *l2ex*l2

 !
: ð28Þ

In the time domain, the elements of Green’s operator matrices are convolution operators with
kernels that may contain distributions. These can be determined by studying asymptotic
expansions of Green’s operator elements in the Laplace domain for large s: The elements are built
up by expressions like

f ð*l1; *l2Þe7x*li ¼ ½ f ð*l1; *l2Þe7xð*li�s=aiÞ�½e7xs=ai �: ð29Þ

The second bracketed factor gives the translation in time of the arrival of the wave front and the
first bracketed factor is expressible as an infinite series in inverse powers of s: The leading terms of
this series, for each of the elements in Eqs. (27) and (28), gives the coefficients for the distributions.
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In that way Green’s operator matrix elements can be divided into

Gþ
11ðx; tÞ ¼

1

a2 � a1
ð�a1dðt � x=a1Þ þ a2dðt � x=a2ÞÞ þ GKþ

11 ðx; tÞ;

Gþ
12ðx; tÞ ¼ GKþ

12 ðx; tÞ;

Gþ
21ðx; tÞ ¼

x

4a2ða2 � a1Þ
ða1dðt � x=a1Þ � a2dðt � x=a2ÞÞ

þ
1

a2 � a1
ðd0ðt � x=a1Þ � d0ðt � x=a2ÞÞ þ GKþ

21 ðx; tÞ;

Gþ
22ðx; tÞ ¼

1

a2 � a1
ða2dðt � x=a1Þ � a1dðt � x=a2ÞÞ þ GKþ

22 ðx; tÞ; ð30Þ

where GKþ
ij ðx; tÞ; i; j ¼ 1; 2; are kernel functions that contains, at most, jump discontinuities. The

elements of G�ðx; tÞ can be obtained in the same way but in that case the time translation is in the
other direction.

4.1. The inverse Laplace transformation of Green’s operator kernels

The aforementioned techniques to perform inverse Laplace transformation, see Appendix A,
apply to the Green’s operator kernels for small distances x: The long time representation works
only after the arrival of the slower wave front, propagating with the velocity c1: (All kernels
contain jump discontinuities at that time.) It depends then on the time range for the short time
representation versus the length of time interval between the arrivals of the faster and the slower
wave fronts if the approximations overlap. If x is large enough there is an interval where neither of
the representations are satisfactory.
In these cases the values of Green’s operator kernels must be obtained in another way. One

alternative is to perform the contour integration numerically. A similar computation is performed
in Ref. [13] and is followed quite closely here. The integrals are of the form

ð2piÞ�1
Z

Br

f ð*l1; *l2Þe
*hðsÞ ds; ð31Þ

where f ð*l1; *l2Þ is a rational function of the eigenoperators and the *hðsÞ are given in Table 1. Since
all integrals contains both of *li; and thus have branch points at s ¼ 0;71;7ia1; the contours are
taken according to Fig. 2.
For some elements and large s; the integrands f ð*l1; *l2Þ have leading terms of order s or 1. In

these cases the leading terms are extracted and treated separately since they have exact inverse
Laplace transforms, see Eq. (30). The remaining part of the integrals along the arcs C1 and C2 can
then be shown to give a zero result by Jordan’s lemma. Moreover, since the exponential order of
the integrands depends on the different *hðsÞ; the contour integrations are performed to the left or
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right of the original contour for different values of the time variable. These are given in Table 1.
When the integrals can be taken along Cright they give a zero result. Along each contour the
integrals are rewritten as integrals of a real variable, for details see [13–15]. The only integrals that
contribute to the total integral are those along L2 through L9: The sum of integrals along the Cleft

are given in Table 2, in which the integrals I1 through I12 are found in Appendix B. The
asymptotic expansions of the kernels in Table 2 for large values of t; calculated according to
Appendix A, show that there is no contribution from the branch points s ¼ 71: Hence, they are
not exponentially growing. The numerical results confirm this.

5. Numerical examples

In this section numerical results from the wave splitting and the propagation with Green’s
operator matrix are presented. The convolution integrals were computed by means of the
trapezoidal rule and the differentiations were approximated by numerical differentiation with the
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L5 R1

Cleft

L1 L2

L9L10

L8

Ri�1

L4L3

R–i�1
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C1

C2

Cright

Im s

L7

Re s
R0

R–1

L6

Fig. 2. Integration contours for Green’s operator kernels.

Table 2

The integrals of Green’s function kernels

Kernel tox=a2 x=a2otox=a1 t > x=a1

GKþ
11 ðx; tÞ 0 I1 þ I2 I1 þ I3

GKþ
12 ðx; tÞ 0 I4 þ I5 I4 þ I6

GKþ
21 ðx; tÞ 0 I7 þ I8 I7 þ I9

GKþ
22 ðx; tÞ 0 I10 þ I11 I10 þ I12
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central point rule (with some modifications at t ¼ 0). The responses for three different boundary
conditions are presented. The first, is one of the boundary conditions from Refs. [9,13], which is

BC1:
@xcð0; tÞ ¼ 0;

wð0; tÞ ¼ v0t1Hðt1Þ;

(
ð32Þ

where t1 ¼ a2t; v0 is a non-dimensional constant and Hðt1Þ is the Heaviside function. This
boundary condition represents forced motion of the free end of a semi-infinite beam. The
responses are shown in Fig. 3. The second and third boundary conditions are

BC2:
cð0; tÞ ¼ 0;

Qð0; tÞ ¼ Q0 f ðtÞ

(
and BC3:

wð0; tÞ ¼ 0;

Mð0; tÞ ¼ M0 f ðtÞ;

(
ð33Þ

ARTICLE IN PRESS

0 50 100 150 200 250
 -40

 -30

 -20

 -10

0

10

20

30

40

i ii iii iv

v

vii

vi

t1

w
/v

0

The transverse deflection w.

0 50 100 150 200

 -0.6

 -0.5

 -0.4

 -0.3

 -0.2

 -0.1

0

0.1

0.2

t1

t1 t1

-Q
/E

A
v 0

The shear force Q

0 50 100 150 200

 -0.2

 -0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 -
M

r0
/E

Iv
0

The moment M

0 50 100 150 200
 -12

 -10

 -8

 -6

 -4

 -2

0

2

∂ x
w

/v
0,

 -
�

/v
0

∂xw (solid) and � (dashed).

(a) (b)

(d)(c)

Fig. 3. The responses for BC1 at various positions x: (a) i–vii: positions x ¼ 0; 5; 10; 15; 20; 30; 40; respectively, (b–d):
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where Q0 and M0 are constant force and moment magnitudes, respectively, and

f ðtÞ ¼
sin2ðo0t=2Þ; tAð0; 2p=o0Þ;

0; teð0; 2p=o0Þ:

(
ð34Þ

The boundary condition BC2 represents a time-dependent point force of magnitude 2Q0 f ðtÞ at
x ¼ 0 on an infinite beam, while BC3 represents a time-dependent bending point moment of
magnitude 2M0 f ðtÞ: The responses are shown in Figs. 4 and 5. The scaling of the time variable t1
is the one used in Refs. [9,13] and makes the first and second wave fronts arrive at a given position
x at times t1 ¼ x and t1 ¼ a2=a1x respectively. In all examples the numerical values q ¼ 21=11;
a1 ¼ 11=8

ffiffiffi
5

p
; a2 ¼ 11=10; n ¼ 0:3 and k0 ¼ 0:813; have been used.

Figs. 3(a) and (b) show the mean transverse deflection and the shear force respectively. If the
interval tAð0; 20Þ is zoomed in, it is clearly visible that the response at x ¼ 5 is in agreement with
the results of Ref. [9]. The corresponding response for the moment in Fig. 3(c) differs by a scaling
factor which is believed to be due to a scaling error in Ref. [9]. Some features in Figs. 3(a)–(d) are
worthy of notice. The oscillations that mark out the responses of the shear force, the moment and
the rotation angle form the response from the lowest thickness-shear mode. In the dimensionless
time-scale t; a1 is the cut-off frequency for this mode, corresponding to the imaginary roots of *l2:
In the interval before the arrival of the slower wave front, the disturbances have propagated with
group velocities which are higher than the effective shear velocity. Taking into consideration the
dispersion relation for the Timoshenko beam, this is part of the response from the second branch,
the thickness-shear mode, more specifically the part for which the group velocity of the second
branch is higher than the effective shear velocity. There is thus a non-dimensional threshold
frequency, a3ð> a1Þ; below which the corresponding disturbances do not propagate faster than the
slower wave front. As t increases the dominating frequency of the oscillating motion approaches
the cut-off frequency. This is illustrated most clearly in Figs. 3(a) and (c).
The jump discontinuities in the shear force, Fig. 3(b), in fact have the same magnitude at both

positions, x ¼ 5 and 40, something that is not evident from the graph due to the resolution. In the
computation of the moment for BC1, the numerical differentiation breaks down at the arrival
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time of the second wave front. In Fig. 3(c), this has been corrected by interpolating between the
time-steps just before and after the arrival time of the second wave front. Note also, that the wave
fields w and @xw are identical to the split fields wþ and @xwþ; since there are no waves propagating
in the negative x direction. The split fields of the original wave splitting, w7

i ; would have been
exponentially growing as et after the arrival of the second wave front.
It is also interesting to see the responses from an excitation with a somewhat more realistic

pulse shape. In Fig. 4, the graphs, corresponding to Figs. 3(b)–(c), are presented for BC2 with
o0 ¼ p=5: Here, the oscillating motion is not as pronounced as for the case of BC1, although the
excitation contains the cut-off frequency.
For a better understanding of the influence of the frequency contents and the type of excitation,

the responses at x ¼ 40 for the shear force, the moment and the energy density were computed for
four different values of o0; o0=a1 ¼ 2; 1; 1=2; 1=

ffiffiffi
8

p
; for each of BC2 and BC3. The energy density

e ¼ epot þ ekin is given, with proper dimensions for all variables, by

epot ¼ 1
2

f1

c21
ð@twÞ

2 þ
f2

c22
ð@tcÞ

2

� �
;

ekin ¼ 1
2
ð f1g2 þ f2ð@xcÞ

2Þ: ð35Þ

The major part of the frequency contents of the excitation is below oo2o0 and, as is seen in
Fig. 5, it is the responses for the two higher o0 that exhibit the oscillating behaviour and they also
have a much larger part arriving before the second wave front, i.e., before t1E72: Another
striking feature is that, for these two values of o0; the responses from the different boundary
conditions are very different. A much larger part of the energy arrives before the arrival of the
second wave front for BC3, while, for the two lower values of o0; the responses are quite similar
for both boundary conditions.
Hence, in order to obtain a strong signal in the time interval before the arrival of the second

wave front, it is advantageous to excite the beam by an applied moment containing frequencies
higher than a3: Note however, the loss of accuracy of the Timoshenko theory for frequencies
significantly higher than the cut-off frequency.

6. Concluding remarks

A purely directional wave splitting for the homogeneous Timoshenko beam has been derived. It
has the advantages of giving split fields, transformation and Green’s operator kernels, which do
not grow exponentially in the time domain, as has been the problem with the original wave
splitting [4]. However, for Green’s operator kernels the problems with exponential behaviour and
large cancellation effects are still present in the numerical evaluation of the kernels as can be seen
from the integrals listed in Appendix B. With bounded split fields and operator kernels it is more
feasible to propagate boundary data over large distances or for long time intervals. This is
necessary when scattering problems are considered, where the measuring point is far from the
scattering inhomogeneity or if the inhomogeneous region is large.
A consequence of deriving split fields other than those of the original wave splitting is that the

dynamics of the split fields are no longer governed by a system of four first order one-way wave
equations. For a homogeneous beam the split fields are governed by a decoupled system of two
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second order one-way wave equations, see Eq. (15). If the beam is inhomogeneous, the system is
coupled. Both systems may of course be written as coupled first order systems in terms of the split
fields and they are obtained directly if the wave splitting transform, Eq. (21), is inserted into the
original first order system. Depending on the nature of the inhomogeneity, different steps must be
taken to account for the spatial dependence introduced by the inhomogeneity. However, the
equations are no longer wave equations with explicit characteristics and this calls for some
generalization of the time domain methods previously used in conjunction with the original wave
splitting. Alternatively, one can use the purely directional wave splitting to propagate the wave
fields to the boundary of an inhomogeneous region and then apply the original wave splitting in
the inhomogeneous region if it is not too large.
Turning to the numerical results, the graphs display several interesting features, among them

the oscillatory interaction between the shear and rotation angles, which is mainly the response
from the thickness-shear mode. Moreover, the amount of propagated energy that arrives before
the arrival of the second wave front depends largely on the type of excitation and on the frequency
contents of the excitation. The knowledge of how to excite the beam in order to obtain a signal
suitable for deconvolution may be valuable in the preparations of scattering experiments in the
time domain.
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Appendix A. Inverse transformation of *A

Here, the time-domain representation of *A is obtained by approximate methods. It serves
as an example of how to obtain time-domain representations for other operators or
transformation matrix elements in this paper. For large s; the asymptotic expansion of *A may
be written as

*A� k1;As ¼ *KAðsÞB
XN
k¼1

akðk � 1Þ!s�k; ðA:1Þ

where k1;A ¼ a�11 þ a�12 : By the converse of Watson’s Lemma [16], the asymptotic expansion ofA
for small t is

A� k1;A@t ¼ KAð	Þ�;

KAðtÞBHðtÞ
XN
k¼1

akt k�1; ðA:2Þ

where the convolution is defined as in Eq. (23). An asymptotic expansion of KA for large values of
t is obtained through contour integration of an approximation of *KA: The branch cuts for *KA
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(and *A ) are drawn according to Fig. 6. The integral along the Bromwich contour is equivalent to
the integral along the contour C1 þ L1 þ?þ L6 þ C7: In this case the contribution
from the integrals along r1; r2; r3;C1;C2;C3;C4 is zero, which is not demonstrated here.
In the neighbourhood of the branch points, s ¼ sl ; l ¼ 1; 2; 3; *KA is expanded in power
series,

*KAðsÞ ¼
XN
k¼0

blkðs � slÞ
1=2þk þ

XN
k¼0

clkðs � slÞ
k: ðA:3Þ

The integrals along L1 þ L2; L3 þ L4 and L5 þ L6 are approximated with the termwise
integrals of the corresponding series expressions. Their sum is the approximation of KA for
large t;

KAðtÞB
X3
l¼1

esl t
XN
k¼0

blk

Gð�ðk þ 1=2ÞÞ
t�ðkþ3=2Þ

 !
: ðA:4Þ

This technique can be studied in several textbooks, for example Ref. [17]. The short and
long time behaviours are plotted in Fig. 7 for different truncations of the series expressions.
As is seen, a region where the short and long time expansions overlap can be
established.
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Appendix B. Integrals for numerical integration

The integrals I1 through I12 are written in terms of

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ Z2

q
qa1

; y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qZðr þ ZÞ
2a2

s
; y2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qZðr � ZÞ
2a2

s
; y3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qZþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
a2

s
;

y4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � Z2

q
a1a2y3

; y5 ¼
qðr þ ZÞffiffiffiffiffiffiffiffiffiffiffi
1þ Z

p ; y6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2qðr þ ZÞ
1þ Z

s
; ðB:1Þ

such that

I1 ¼ �2p�1
Z a1

0

y3
y23 þ y24

ðy4 coshðxZ1=2y4ÞsinðZtÞ � y3 sinhðxZ1=2y4ÞcosðZtÞÞ dZ;

I2 ¼ p�1
Z 1

0

y5ffiffiffiffiffiffiffiffiffiffiffi
1� Z

p sinhðxy1 � ZtÞcosðxy2Þ þ coshðxy1 � ZtÞsinðxy2Þ

 !
dZ;

I3 ¼ 2p�1
Z a1

0

y3y4
y23 þ y24

sinðxZ1=2y3 � ZtÞ dZ;

I4 ¼ �2p�1
Z a1

0

1

y23 þ y24
ðy3 sinhðxZ1=2y4ÞsinðZtÞ þ y4 coshðxZ1=2y4ÞcosðZtÞÞ

dZffiffiffi
Z

p ;

I5 ¼ p�1
Z 1

0

y6 coshðxy1 � ZtÞcosðxy2Þ
dZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zð1� ZÞ
p ;

I6 ¼ 2p�1
Z a1

0

y4
y23 þ y24

cosðxZ1=2y3 � ZtÞ
dZffiffiffi
Z

p ;
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I7 ¼ 2p�1
Z a1

0

y3y4
y23 þ y24

ðy3 coshðxZ1=2y4ÞcosðZtÞ � y4 sinhðxZ1=2y4ÞsinðZtÞÞ
ffiffiffi
Z

p
dZ;

I8 ¼ �p�1
Z 1

0

y6ðy
2
1 þ y22Þcoshðxy1 � ZtÞcosðxy2Þ

dZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zð1� ZÞ

p ;

I9 ¼ 2p�1
Z a1

0

y23y4
y23 þ y24

cosðxZ1=2y3 � ZtÞ
ffiffiffi
Z

p
dZ;

I10 ¼ �2p�1
Z a1

0

y4
y23 þ y24

ðy4 sinhðxZ1=2y4ÞcosðZtÞ þ y3 coshðxZ1=2y4ÞsinðZtÞÞ dZ;

I11 ¼ p�1
Z 1

0

y5ffiffiffiffiffiffiffiffiffiffiffi
1� Z

p sinhðxy1 � ZtÞcosðxy2Þ � coshðxy1 � ZtÞsinðxy2Þ

 !
dZ;

I12 ¼ �2p�1
Z a1

0

y3y4
y23 þ y24

sinðxZ1=2y3 � ZtÞ dZ:

The evaluation of these integrals is not straightforward. Besides being singular and oscillating
integrals, it is also at this stage that the problems with exponentially growing kernels and large
cancellation effects reappear, as several integrands contain hyperbolic trigonometric functions. It
seems that the exponential behaviour is more critical than the oscillations. The singularities are
found at the endpoints of the integration interval and can be handled by using a matching
quadrature rule. For I5 and I8;Gauss–Chebyshev quadrature was used, for I4; I6 and the first term
of I2 and I11; Gauss–Jacobi quadrature was used. The remaining integrals were computed with
Gauss–Legendre quadrature.

Appendix C. Notes on some series representations

In Ref. [4] the eigenoperators li; i ¼ 1; 2; are represented in the time domain as

liuðtÞ ¼ c�1@tuðtÞ þ ðFið	Þ�uð	ÞÞðtÞ; ðC:1Þ

where the convolution kernel functions FiðtÞ are exponentially growing. Time domain expressions
for these functions are obtained as series expansions in the same way as described in Appendix A.
For the asymptotic expansion for large time t however, only the contribution from the rightmost
branch point is accounted for, since this contribution is exponentially larger than the
contributions from the branch points on the imaginary axis. Thus all terms in the expansions
are exponentially growing, more specifically, FiðtÞ ¼ Oðt�3=2et=tÞ; i ¼ 1; 2; as t-N:
In view of the argument in Section 3.1, F1ðtÞ þ F2ðtÞ ¼ Oð1Þ: Therefore, the sum of the

asymptotic series expansions in [4] must equal zero, which is seen by noting from Eq. (8) that
c1ðq þ 1Þ1=2 ¼ c2ðq � 1Þ1=2; for the terms presented. The series thus just differs by sign.
The exponentially growing behaviour of the split fields cancels when the physical fields are

formed. Hence, the exponentially small contributions from the branch points on the imaginary
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axis must be included to get accurate results of the physical fields for large values of the time
variable.
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